Leveraging multi-temporal Sentinel-1 and 2 satellite data for leaf area index estimation with deep learning

Clement Wang, Antoine Debouchage, Valentin Goldité, Aurélien Wery, Jules Salzinger

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

The Leaf Area Index (LAI) is a critical parameter to understand ecosystem health and vegetation dynamics. In this paper, we propose a novel method for pixel-wise LAI prediction by leveraging the complementary information from Sentinel 1 radar data and Sentinel 2 multi-spectral data at multiple timestamps. Our approach uses a deep neural network based on multiple U-nets tailored specifically to this task. To handle the complexity of the different input modalities, it is comprised of several modules that are pre-trained separately to represent all input data in a common latent space. Then, we fine-tune them end-to-end with a common decoder that also takes into account seasonality, which we find to play an important role. Our method achieved 0.06 RMSE and 0.93 R² score on publicly available data. We make our contributions available for future works to further improve on our current progress.
OriginalspracheEnglisch
TitelProceedings of the 2023 conference on Big Data from Space
Redakteure/-innenPierre SOILLE, Stefanie LUMNITZ, Sergio ALBANI
Herausgeber (Verlag)Publications Office of the European Union
KapitelDeep Learning for Monitoring and Predicting
Seiten193-196
Seitenumfang3
ISBN (elektronisch)978-92-68-08696-4
DOIs
PublikationsstatusVeröffentlicht - 2 Nov. 2023
VeranstaltungBig Data from Space 2023 - Austria Center Vienna, Vienna, Österreich
Dauer: 6 Nov. 20239 Nov. 2023

Konferenz

KonferenzBig Data from Space 2023
KurztitelBiDS2023
Land/GebietÖsterreich
StadtVienna
Zeitraum6/11/239/11/23

Research Field

  • Assistive and Autonomous Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Leveraging multi-temporal Sentinel-1 and 2 satellite data for leaf area index estimation with deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren