Abstract
The Leaf Area Index (LAI) is a critical parameter to understand ecosystem health and vegetation dynamics. In this paper, we propose a novel method for pixel-wise LAI prediction by leveraging the complementary information from Sentinel 1 radar data and Sentinel 2 multi-spectral data at multiple timestamps. Our approach uses a deep neural network based on multiple U-nets tailored specifically to this task. To handle the complexity of the different input modalities, it is comprised of several modules that are pre-trained separately to represent all input data in a common latent space. Then, we fine-tune them end-to-end with a common decoder that also takes into account seasonality, which we find to play an important role. Our method achieved 0.06 RMSE and 0.93 R² score on publicly available data. We make our contributions available for future works to further improve on our current progress.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 2023 conference on Big Data from Space |
Redakteure/-innen | Pierre SOILLE, Stefanie LUMNITZ, Sergio ALBANI |
Herausgeber (Verlag) | Publications Office of the European Union |
Kapitel | Deep Learning for Monitoring and Predicting |
Seiten | 193-196 |
Seitenumfang | 3 |
ISBN (elektronisch) | 978-92-68-08696-4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2 Nov. 2023 |
Veranstaltung | Big Data from Space 2023 - Austria Center Vienna, Vienna, Österreich Dauer: 6 Nov. 2023 → 9 Nov. 2023 |
Konferenz
Konferenz | Big Data from Space 2023 |
---|---|
Kurztitel | BiDS2023 |
Land/Gebiet | Österreich |
Stadt | Vienna |
Zeitraum | 6/11/23 → 9/11/23 |
Research Field
- Assistive and Autonomous Systems