Machine learning-based channel prediction for widely distributed massive MIMO with real-world data

David Löschenbrand (Vortragende:r), Markus Hofer, Lukas Eller, Markus Rupp, Thomas Zemen

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in Tagungsband

Abstract

Widely distributed massive multiple input multiple output (WD-MIMO) systems are promising candidates for future mobile networks, given their improved energy efficiency, coverage and throughput. To spatially separate the users, WD-MIMO relies heavily on accurate and timely channel state information (CSI), which is hard to obtain in high mobility scenarios. To reduce the amount of pilot overhead necessary for obtaining CSI, we investigate linear and machine learning (ML)-based CSI prediction techniques and compare them in terms of achievable spectral efficiency (SE). The considered methods are constant continuation, Wiener prediction, dense, and long short term memory (LSTM) neural networks (NNs). Real-world data from a widely distributed massive MIMO channel measurement campaign with various base station (BS) antenna array aperture sizes is utilized for NN training and validation purposes. The capability of the considered CSI prediction methods to mitigate the effects of channel aging in realistic high-mobility scenarios is analyzed for different geometries of the massive MIMO BS antenna arrays. We can demonstrate a SE improvement of 2 bit/s/Hz for the LSTM NN compared to a Wiener predictor.
OriginalspracheEnglisch
TitelAsilomar Conference on Signals, Systems, and Computers (ASILOMAR)
ErscheinungsortPacific Grove, CA, USA
Seitenumfang6
PublikationsstatusVeröffentlicht - Okt. 2023
Veranstaltung2023 Asilomar Conference on Signals, Systems, and Computers - Pacific Grove, California, USA/Vereinigte Staaten
Dauer: 29 Okt. 20231 Nov. 2023

Konferenz

Konferenz2023 Asilomar Conference on Signals, Systems, and Computers
Kurztitel(ACSSC 2023)
Land/GebietUSA/Vereinigte Staaten
StadtCalifornia
Zeitraum29/10/231/11/23

Research Field

  • Enabling Digital Technologies

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine learning-based channel prediction for widely distributed massive MIMO with real-world data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren