Machine Learning Based Walking Aid Detection in Timed Up-and-Go Test Recordings of Elderly Patients

Andreas Ziegl (Vortragende:r), Dieter Hayn, Peter Kastner, Kerstin Löffler, Lisa Weidinger, Bianca Brix, Nandu Goswami, Günter Schreier, Günter Schreier

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Frailty and falls are the main causes of morbidity and disability in elderly people. The Timed Up-and-Go (TUG) test has been proposed as an appropriate method for evaluating elderly individuals' risk of falling. To analyze the TUG's potential for falls prediction, we conducted a clinical study with participants aged ≥ 65 years, living in nursing homes. We harvested 138 TUG recordings with the information, if patients used a walking aid or not and developed a method to predict the use of walking aids using a Random Forest Classifier for ultrasonic based TUG test recordings. We achieved a high accuracy with an Area Under the Curve (AUC) of 96,9% using a 20% leave out evaluation strategy. Automated collection of structured data from TUG recordings - like the use of a walking aid - may help to improve fall risk tools in future.
OriginalspracheEnglisch
Titel2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Seiten808-811
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2020
VeranstaltungAnnual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) -
Dauer: 20 Juli 202024 Juli 2020

Konferenz

KonferenzAnnual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Zeitraum20/07/2024/07/20

Research Field

  • Exploration of Digital Health

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning Based Walking Aid Detection in Timed Up-and-Go Test Recordings of Elderly Patients“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren