Machine-learnt state estimation for optimization in low voltage distribution grids

Sarah Reisenbauer (Vortragende:r), Bharath-Varsh Rao, Gregor Taljan

Publikation: Beitrag in Buch oder TagungsbandPosterpräsentation mit Beitrag in TagungsbandBegutachtung

Abstract

Real-time state estimation becomes essential for advanced monitoring and control of low-voltage networks. Machine-learning algorithms are fast predictors and have been employed in state estimation, but absence of adequate training datasets impede deployment. We present a novel approach for distribution system state estimation using machine learning methods, based on topological information as the sole input, no measurement data is required. The predictability of unknown quantities in low observability grid settings was studied in two test grids and one real-world example in various scenarios of observed and unobserved grid positions and loading configurations. The findings imply that accurate state estimation is possible even in low observability systems. The method allows to assess grids for the best number of measurement devices and their ideal positioning for maximum information gain.
OriginalspracheEnglisch
TitelThe Institution of Engineering and Technology
DOIs
PublikationsstatusVeröffentlicht - 29 Sept. 2023
VeranstaltungCIRED 2023
International Conference
& Exhibition on Electricity Distribution
- City of Rome, La Nuvola, Rome, Italien
Dauer: 12 Juni 202315 Juni 2023
Konferenznummer: 2023
https://www.cired2023.org/#

Konferenz

KonferenzCIRED 2023
International Conference
& Exhibition on Electricity Distribution
KurztitelCIRED
Land/GebietItalien
StadtRome
Zeitraum12/06/2315/06/23
Internetadresse

Research Field

  • Power System Digitalisation

Web of Science subject categories (JCR Impact Factors)

  • Engineering, Electrical & Electronic

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine-learnt state estimation for optimization in low voltage distribution grids“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren