Abstract
We present a general framework for solving a real-world multimodal home-healthcare scheduling (MHS) problem from a major Austrian home-healthcare provider. The goal of MHS is to assign home-care staff to customers and determine efficient multimodal tours while considering staff and customer satisfaction. Our approach is designed to be as problem-independent as possible, such that the resulting methods can be easily adapted to MHS setups of other home-healthcare providers. We chose a two-stage approach: in the first stage, we generate initial solutions either via constraint programming techniques or by a random procedure. During the second stage, the initial solutions are (iteratively) improved by applying one of four metaheuristics: variable neighborhood search, a memetic algorithm, scatter search and a simulated annealing hyper-heuristic. An extensive computational comparison shows that the approach is capable of solving real-world instances in reasonable time and produces valid solutions within only a few seconds.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 89-113 |
Seitenumfang | 25 |
Fachzeitschrift | Central European Journal of Operations Research |
Volume | 23 |
Issue | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2015 |
Research Field
- Ehemaliges Research Field - Mobility Systems