Mining Specification Parameters for Multi-class Classification

Edgar Alexis Aguilar Lozano, Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini (Vortragende:r), Dejan Nickovic

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung


We present a method for mining parameters of temporal specifications for signal classification. Given a parametric formula and a set of labeled traces, we find one parameter valuation for each class and use it to instantiate the specification template. The resulting formula characterizes the signals in a class by discriminating them from signals of other classes. We propose a two-step approach: first, for each class, we approximate its validity domain, which is the region of the valuations that render the formula satisfied. Second, we select from each validity domain the valuation that maximizes the distance from the validity domain of other classes. We provide a statistical guarantee that the selected parameter valuation is at a bounded distance from being optimal. Finally, we validate our approach on three case studies from different application domains.
TitelRuntime Verification - 23rd International Conference, RV 2023, Thessaloniki, Greece, October 3-6, 2023, Proceedings
Redakteure/-innenPanagiotis Katsaros, Laura Nenzi
Herausgeber (Verlag)Springer Nature Switzerland AG
ISBN (elektronisch)978-3-031-44267-4
ISBN (Print)978-3-031-44266-7
PublikationsstatusVeröffentlicht - 3 Okt. 2023
VeranstaltungRV 2023 International Conference on Runtime Verification - Thessaloniki, Thessaloniki, Griechenland
Dauer: 3 Okt. 20236 Okt. 2023


KonferenzRV 2023 International Conference on Runtime Verification
Stadt Thessaloniki

Research Field

  • Dependable Systems Engineering


Untersuchen Sie die Forschungsthemen von „Mining Specification Parameters for Multi-class Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren