Mining Specifications for Predictive Safety Monitoring

Eleonora Nesterini (Autor:in und Vortragende:r), Ezio Bartocci, Alessio Gambi, Dejan Nickovic, Sanjit A. Seshia, Hazem Torfah

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Safety-critical autonomous systems must reliably predict unsafe behavior to take timely corrective actions. Safety properties are often defined over variables that are not directly observable at runtime, making prediction and detection of violations hard. We present a new approach for learning interpretable monitors characterized by concise Signal Temporal Logic (STL) formulas that can predict safety property violations from the observable sensor data. We train these monitors from synthetic, possibly highly unbalanced data generated in a simulation environment. Our specification mining procedure combines a grammar-based method and two novel ensemble techniques. Our approach outperforms the existing solutions by enhancing accuracy and explainability, as demonstrated in two autonomous driving case studies.
OriginalspracheEnglisch
TitelICCPS '25: Proceedings of the ACM/IEEE 16th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2025
ErscheinungsortNew York
Herausgeber (Verlag)Association for Computing Machinery
Seiten1-11
Seitenumfang11
ISBN (Print)979-8-4007-1498-6
PublikationsstatusVeröffentlicht - 6 Mai 2025
VeranstaltungICCPS '25: ACM/IEEE 16th International Conference on Cyber-Physical Systems - Irvine , Irvine , USA/Vereinigte Staaten
Dauer: 6 Mai 20259 Mai 2025

Konferenz

KonferenzICCPS '25: ACM/IEEE 16th International Conference on Cyber-Physical Systems
Land/GebietUSA/Vereinigte Staaten
StadtIrvine
Zeitraum6/05/259/05/25

Research Field

  • Dependable Systems Engineering

Fingerprint

Untersuchen Sie die Forschungsthemen von „Mining Specifications for Predictive Safety Monitoring“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren