MobiSpaces: An Architecture for Energy-Efficient Data Spaces for Mobility Data

Christos Doulkeridis , Georgios M. Santipantakis, Nikolaos Koutroumanis, George Makridis, Vasilis Koukos, George Theodoropoulos, Yannis Theodoridis, Dimosthenis Kyriazis, Pavlos Kranas, Diego Burgos, Ricardo Jimenez-Peris, Mariana M G Duarte, Mahmoud Sakr, Esteban Zimányi, Anita Graser, Clemens Heistracher, Kristian Torp, Ioannis Chrysakis, Theofanis Orphanoudakis, Evgenia KapassaMarios Touloupou, Jürgen Neises, Petros Petrou, Sophia Karagiorgou, Rosario Catelli, Domenico Messina, Marcelo Corrales Compagnucci, Matteo Falsetta

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In this paper, we present an architecture for mobility data spaces enabling trustworthy and reliable data operations along with its main constituent parts. The architecture makes use of a data lake for scalable storage of diverse mobility data sets, on top of which separate computing and storage layers are implemented to allow independent scaling with a data operations toolbox providing all data operations. Furthermore, to cater for mobility analytics, machine learning and artificial intelligence support, an edge analytics suite is provided that encompasses distributed algorithms for mobility analytics and federated learning, thereby exploiting edge computing technologies. In turn, this is supported by a resource allocator that monitors the energy consumption of data-intensive operations and provides this information to the platform for intelligent task placement in edge devices, aiming at energy-efficient operations. As a result, an end-to-end platform is proposed that combines data services and infrastructure services towards supporting mobility application domains, such as urban and maritime.
OriginalspracheEnglisch
TitelProceedings of IEEE BigDataService 2023
UntertitelThe 9th IEEE International Conference on Big Data Computing Service and Machine Learning Applications
Seiten1487 - 1494
ISBN (elektronisch)979-8-3503-2445-7
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Conference on Big Data (BigData) - Sorrento, Sorrento, Italien
Dauer: 15 Dez. 202318 Dez. 2023

Konferenz

Konferenz2023 IEEE International Conference on Big Data (BigData)
Land/GebietItalien
StadtSorrento
Zeitraum15/12/2318/12/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „MobiSpaces: An Architecture for Energy-Efficient Data Spaces for Mobility Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren