TY - JOUR
T1 - MOF@PEDOT Composite Films for Impedimetric Pesticide Sensors
AU - Sappia, Luciano
AU - Tuninetti, J.S.
AU - Ceolín, Marcelo
AU - Knoll, Wolfgang
AU - Rafti, Matias
AU - Azzaroni, Omar
PY - 2020
Y1 - 2020
N2 - Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post‐harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal‐organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4‐ethylene dioxythiophene) (PEDOT) layer is presented. The as‐synthetized thin films are produced via spin‐coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost‐effective, single‐step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking‐water quality.
AB - Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post‐harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal‐organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4‐ethylene dioxythiophene) (PEDOT) layer is presented. The as‐synthetized thin films are produced via spin‐coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost‐effective, single‐step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking‐water quality.
U2 - 10.1002/gch2.201900076
DO - 10.1002/gch2.201900076
M3 - Article
SN - 2056-6646
VL - 4
JO - Global Challenges
JF - Global Challenges
IS - 1900076
ER -