Muckle+: End-to-End Hybrid Authenticated Key Exchanges

Sonja Patricia Bruckner, Sebastian Ramacher, Christoph Striecks (Vortragende:r)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung


End-to-end authenticity in public networks plays a significant role. Namely, without authenticity, the adversary might be able to retrieve even confidential information straight away by impersonating others. Proposed solutions to establish an authenticated channel cover pre-shared key-based, password-based, and certificate-based techniques. To add confidentiality to an authenticated channel, authenticated key exchange (AKE) protocols usually have one of the three solutions built in. As an amplification, hybrid AKE (HAKE) approaches are getting more popular nowadays and were presented in several flavors to incorporate classical, post-quantum, or quantum-key-distribution components. The main benefit is redundancy, i.e., if some of the components fail, the primitive still yields a confidential and authenticated channel. However, current HAKE instantiations either rely on pre-shared keys (which yields inefficient end-to-end authenticity) or only support one or two of the three above components (resulting in reduced redundancy and flexibility).

In this work, we present an extension of a modular HAKE framework due to Dowling, Brandt Hansen, and Paterson (DBP, PQCrypto'20) that does not suffer from the above constraints. While the DBP instantiation, dubbed Muckle, requires pre-shared keys (and hence yields inefficient end-to-end authenticity), our extended instantiation called Muckle+ utilizes post-quantum digital signatures. While replacing pre-shared keys with digital signatures is rather straightforward in general, this turned out to be surprisingly non-trivial when applied to HAKE frameworks (resulting in a significant model change with adapted proof techniques).
TitelPQCrypto 2023
UntertitelPost-Quantum Cryptography
Redakteure/-innenThomas Johansson, Daniel Smith-Tone
Herausgeber (Verlag)Springer
ISBN (elektronisch)978-3-031-40003-2
ISBN (Print)978-3-031-40002-5
PublikationsstatusVeröffentlicht - Aug. 2023
Veranstaltung14th International Workshop, PQCrypto 2023 - College Park, Maryland, USA/Vereinigte Staaten
Dauer: 16 Aug. 202318 Aug. 2023


NameLecture Notes in Computer Science
Herausgeber (Verlag)Springer Cham


Workshop14th International Workshop, PQCrypto 2023
Land/GebietUSA/Vereinigte Staaten

Research Field

  • Cyber Security


Untersuchen Sie die Forschungsthemen von „Muckle+: End-to-End Hybrid Authenticated Key Exchanges“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren