Natural Language Processing for Detecting Medication-Related Notes in Heart Failure Telehealth Patients

Alphons Eggerth (Vortragende:r), Alphons Eggerth, Karl Kreiner, Dieter Hayn, Bernhard Erich Pfeifer, Bernhard Erich Pfeifer, Gerhard Pölzl, Tim Egelseer-Bründl, Günter Schreier

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Abstract. Heart Failure is a severe chronic disease of the heart. Telehealth networks implement closed-loop healthcare paradigms for optimal treatment of the patients. For a comprehensive documentation of medication treatment, health professionals create free text collaboration notes in addition to structured information. To make this valuable source of information available for adherence analyses, we developed classifiers for automated categorization of notes based on natural language processing, which allows filtering of relevant entries to spare data analysts from tedious manual screening. Furthermore, we identified potential improvements of the queries for structured treatment documentation. For 3,952 notes, the majority of the manually annotated category tags was medication-related. The highest F1-measure of our developed classifiers was 0.90. We conclude, that our approach is a valuable tool to support adherence research based on datasets containing free text entries.
OriginalspracheEnglisch
TitelDigital Personalized Health and Medicine
Redakteure/-innenLouise B. Pape-Haugaard, Christian Lovis, Inge Cort Madsen, Patrick Weber, Per Hostrup Nielsen, Philip Scott
Herausgeber (Verlag)IOS Press
Seiten761-765
Seitenumfang5
ISBN (Print)978-1-64368-082-8
PublikationsstatusVeröffentlicht - 2020
Veranstaltung30th Medical Informatics Europe conference (MIE 2020) CANCELLED due to the SARS-CoV-2 pandemy -
Dauer: 28 Apr. 20201 Mai 2020

Konferenz

Konferenz30th Medical Informatics Europe conference (MIE 2020) CANCELLED due to the SARS-CoV-2 pandemy
Zeitraum28/04/201/05/20

Research Field

  • Exploration of Digital Health

Schlagwörter

  • Adherence
  • heart failure
  • telemedicine
  • text mining
  • machine learning

Fingerprint

Untersuchen Sie die Forschungsthemen von „Natural Language Processing for Detecting Medication-Related Notes in Heart Failure Telehealth Patients“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren