Non-Stationarity in Multiagent Reinforcement Learning in Electricity Market Simulation

Charles Renshaw-Whitman, Viktor Zobernig, Jochen Cremer, Laurens DE Vries

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Downloads (Pure)

Abstract

The design of electricity markets may be facilitated by simulating actors’ behaviors. Recent studies model human decision-makers within markets as agents which learn strategies that maximize expected profits. This work investigates the problem of ‘non-stationarity’ in the context of market simulations, a problem with the learning-algorithms used by such studies which results in agents behaving irrationally, thus limiting the studies’ applicability to real-world strategic behavior. Isolating the source of the problem for a day-ahead electricity market, this paper proposes methods which meliorate this problem in simple test-cases, and proves requirements under which ‘centralized-training, decentralized-execution’ value-learning methods will converge
to correct behavior in general. Subsequently, this paper proposes a framework for ‘adversarial market design’ that includes the market-designer as an agent. This allows the optimization of market-designs subject to possibly strategic behavior of participating firm
OriginalspracheEnglisch
Aufsatznummer110712
Seiten (von - bis)1-8
Seitenumfang8
FachzeitschriftElsevier - Electric Power Systems Research
Volume235
Issue110712
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2024
VeranstaltungPower System Computation Conference (PSCC) - Paris Saclay, Paris, Frankreich
Dauer: 3 Juni 20247 Juni 2024
Konferenznummer: 23
https://pscc2024.fr/

Research Field

  • Flexibility and Business Models

Fingerprint

Untersuchen Sie die Forschungsthemen von „Non-Stationarity in Multiagent Reinforcement Learning in Electricity Market Simulation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren