Non-Stationarity in Multiagent Reinforcement Learning in Electricity Market Simulation

Charles Renshaw-Whitman, Viktor Zobernig (Vortragende:r), Jochen Cremer, Laurens DE Vries

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

2 Downloads (Pure)

Abstract

The design of electricity markets may be facilitated by simulating actors’ behaviors. Recent studies model human decision-makers within markets as agents which learn strategies that maximize expected profits. This work investigates the problem
of ’non-stationarity’ in the context of market simulations, a problem with the learning-algorithms used by such studies which results in agents behaving irrationally, thus limiting the studies’ applicability to real-world strategic behavior.
OriginalspracheEnglisch
Titel23rd Power Systems Computation Conference
Seiten1-9
Seitenumfang9
PublikationsstatusVeröffentlicht - 4 Juni 2024
Veranstaltung23rd Power Systems Computation Conference - Paris, France, Paris, Frankreich
Dauer: 4 Juni 20247 Juni 2024
Konferenznummer: 23
https://pscc2024.fr/

Konferenz

Konferenz23rd Power Systems Computation Conference
KurztitelPSCC 2024
Land/GebietFrankreich
StadtParis
Zeitraum4/06/247/06/24
Internetadresse

Research Field

  • Flexibility and Business Models

Diese Publikation zitieren