Open-Vocabulary Affordance Detection using Knowledge Distillation and Text-Point Correlation

Tuan Van Vo, Minh Nhat Vu, Baoru Huang, Toan Nguyen, Ngan Le, Thieu Vo, Anh Nguyen

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Affordance detection presents intricate challenges and has a wide range of robotic applications. Previous works have faced limitations such as the complexities of 3D object shapes, the wide range of potential affordances on real-world objects, and the lack of open-vocabulary support for affordance understanding. In this paper, we introduce a new open-vocabulary affordance detection method in 3D point clouds, leveraging knowledge distillation and text-point correlation. Our approach employs pre-trained 3D models through knowledge distillation to enhance feature extraction and semantic understanding in 3D point clouds. We further introduce a new text-point correlation method to learn the semantic links between point cloud features and open-vocabulary labels. The intensive experiments show that our approach outperforms previous works and adapts to new affordance labels and unseen objects. Notably, our method achieves the improvement of 7.96% mIOU score compared to the baselines. Furthermore, it offers real-time inference which is well-suitable for robotic manipulation applications.
OriginalspracheEnglisch
Titel2024 IEEE International Conference on Robotics and Automation (ICRA)
Seiten13968-13975
DOIs
PublikationsstatusVeröffentlicht - 8 Aug. 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation (ICRA) - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024
https://2024.ieee-icra.org/

Publikationsreihe

Name2024 IEEE International Conference on Robotics and Automation (ICRA)

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation (ICRA)
Land/GebietJapan
StadtYokohama
Zeitraum13/05/2417/05/24
Internetadresse

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Open-Vocabulary Affordance Detection using Knowledge Distillation and Text-Point Correlation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren