Optimal Placement of Stream Processing Operators in the Fog

Thomas Hiessl, Vasileios Karagiannis (Vortragende:r), Christoph Hochreiner, Stefan Schulte, Matteo Nardelli

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Elastic data stream processing enables applications to query and analyze streams of real time data. This is commonly facilitated by processing the flow of the data streams using a collection of stream processing operators which are placed in the cloud. However, the cloud follows a centralized approach which is prone to high latency delay. For avoiding this delay, we leverage on the fog computing paradigm which extends the cloud to the edge of the network.In order to design a stream processing solution for the fog, we first formulate an optimization problem for the placement of stream processing operators, which is tailored to fog computing environments. Then, we build a plugin (for stream processing frameworks) which solves the optimization problem periodically in order to support the dynamic resources of the fog. We evaluate this approach by performing experiments on an OpenStack testbed. The results show that our plugin reduces the response time and the cost by 31.5% and 8.8% respectively, compared to optimizing the placement of operators only upon initialization.
OriginalspracheEnglisch
Titel2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC)
Erscheinungsort2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC)
Seiten1-10
Seitenumfang10
ISBN (elektronisch)978-1-7281-2365-3
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Veranstaltung2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC) -
Dauer: 14 Mai 201917 Mai 2019

Konferenz

Konferenz2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC)
Zeitraum14/05/1917/05/19

Research Field

  • Enabling Digital Technologies

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimal Placement of Stream Processing Operators in the Fog“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren