Abstract
The present study proposes a new methodology that combines quantitative and qualitative data for the generation of representative personas for commuters. The profiles can be used to better understand their travel behaviour and mode choices. The research is based on the example of the region of Agder in Norway and aims to overcome the persona development shortcomings identified by previous researchers. Data from a regional travel behaviour survey (N= 1 849) is
analysed using latent class cluster analysis (LCCA), and enriched with qualitative input from 32 interviews, and information provided by an expert panel. This results in a set of 20 representativevpersona profiles for the case study region. The proposed methodology is easily replicable in other urban networks and has the potential to provide insight into the mobility behaviour and needs of specific groups of people in order to adapt the transport services and encourage climate-friendly behaviour.
analysed using latent class cluster analysis (LCCA), and enriched with qualitative input from 32 interviews, and information provided by an expert panel. This results in a set of 20 representativevpersona profiles for the case study region. The proposed methodology is easily replicable in other urban networks and has the potential to provide insight into the mobility behaviour and needs of specific groups of people in order to adapt the transport services and encourage climate-friendly behaviour.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 100095 |
Seiten (von - bis) | 1-24 |
Seitenumfang | 24 |
Fachzeitschrift | Multimodal Transportation |
Volume | 2 |
Issue | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Dez. 2023 |
Research Field
- Ehemaliges Research Field - Integrated Energy Systems
- Climate Resilient Pathways
Fingerprint
Untersuchen Sie die Forschungsthemen von „Persona Design Methodology for Work-Commute Travel Behaviour Using Latent Class Cluster Analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.Auszeichnungen
-
Multimodal Transportation - 2024 Best Article Award
Rasca, S. (Empfänger/-in), Markvica, K. (Empfänger/-in) & Biesinger, B. (Empfänger/-in), 14 Jan. 2025
Auszeichnung: Best paper award für Beitrag in einer Fachzeitschrift/ auf einer Konferenz
Datei