Phish Me If You Can - Lexicographic Analysis and Machine Learning for Phishing Websites Detection with PHISHWEB

Lucas Torrealba (Autor:in und Vortragende:r), Pedro Casas-Hernandez, Javier Bustos-Jiménez, Germán Capdehourat, Mislav Findrik

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

We introduce PHISHWEB, a novel approach to website phishing detection, which detects and categorizes malicious websites through a progressive, multi-layered analysis. PHISHWEB’s detection includes forged domains such as homoglyph and typosquatting, as well as automatically generated domains through DGA technology. The focus of PHISHWEB is on lexicographic-based analysis of the domain name itself, improving applicability and scalability of the approach. Preliminary results on the application of PHISHWEB to multiple open domain-name datasets show precision and recall results above 90%. We additionally extend PHISHWEB’s detection of DGA domains through Machine Learning (ML), using a small set of highly specialized lexicographic domain features. Results on the detection of DGA domains show that, for a false alarm rate below 1%, the ML-extension of PHISHWEB improves non-ML PHISHWEB DGA detector as well as state-of-the-art by at least 60%, realizing precision and recall values of 93.1% and 84.8%, respectively. Finally, we also present preliminary results on the application of PHISHWEB to real, in the wild DNS requests collected at large mobile and fixed-line operational networks, discussing some of the findings.
OriginalspracheEnglisch
TitelIEEE 9th International Conference on Network Softwarization (NetSoft)
Erscheinungsort2023
Seiten252
Seitenumfang256
ISBN (elektronisch)979-8-3503-9980-6
DOIs
PublikationsstatusVeröffentlicht - 13 Juli 2023
Veranstaltung9th IEEE International Conference on Network Softwarization, NetSoft 2023 -
Dauer: 19 Juni 202323 Juni 2023

Konferenz

Konferenz9th IEEE International Conference on Network Softwarization, NetSoft 2023
Zeitraum19/06/2323/06/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Phish Me If You Can - Lexicographic Analysis and Machine Learning for Phishing Websites Detection with PHISHWEB“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren