Predicting Battery Cycle Life with Few-Shot Transfer Learning over Heterogeneous Datasets

Runyao Yu, Jiaqi Wang, Yongsheng Han, Chi Zhang, Teddy Szemberg O’Connor, Jochen Cremer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

This paper presents an efficient approach to battery cycle life prediction through few-shot transfer learning, addressing the challenges of costly and limited battery aging data. Leveraging freely available datasets, a multi-layer perceptron (MLP) model was pretrained on diverse battery aging datasets to adapt to new prediction tasks with minimal training samples through few-shot fine-tuning techniques on the target data. The proposed fine-tuning strategy was validated using a heterogeneous aging dataset of 347 batteries, with cycle lives ranging from 144 to 4,052 cycles, incorporating batteries with lithium iron phosphate (LFP), lithium cobalt oxide (LCO), nickel cobalt aluminum oxide (NCA), and nickel manganese cobalt oxide (NMC) chemistries, which ensures robust validation of our methods.
OriginalspracheEnglisch
Aufsatznummer979-8-3503-9042-1/24
Seiten (von - bis)1-4
Seitenumfang4
Fachzeitschrift IEEE PES Transaction
PublikationsstatusVeröffentlicht - 17 Okt. 2024
VeranstaltungIEEE ISGT Europe 2024: “Towards Net-Zero: Integrating Smart Technologies for a Decarbonized Connected Energy Grid” - Sheraton Dubrovnik Riviera Hotel, Srebreno, Kroatien
Dauer: 14 Okt. 202417 Okt. 2024
https://attend.ieee.org/isgt-2024/

Research Field

  • Flexibility and Business Models

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting Battery Cycle Life with Few-Shot Transfer Learning over Heterogeneous Datasets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren