Abstract
This paper presents an efficient approach to battery cycle life prediction through few-shot transfer learning, addressing the challenges of costly and limited battery aging data. Leveraging freely available datasets, a multi-layer perceptron (MLP) model was pretrained on diverse battery aging datasets to adapt to new prediction tasks with minimal training samples through few-shot fine-tuning techniques on the target data. The proposed fine-tuning strategy was validated using a heterogeneous aging dataset of 347 batteries, with cycle lives ranging from 144 to 4,052 cycles, incorporating batteries with lithium iron phosphate (LFP), lithium cobalt oxide (LCO), nickel cobalt aluminum oxide (NCA), and nickel manganese cobalt oxide (NMC) chemistries, which ensures robust validation of our methods.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 979-8-3503-9042-1/24 |
Seiten (von - bis) | 1-4 |
Seitenumfang | 4 |
Fachzeitschrift | IEEE PES Transaction |
Publikationsstatus | Veröffentlicht - 17 Okt. 2024 |
Veranstaltung | IEEE ISGT Europe 2024: “Towards Net-Zero: Integrating Smart Technologies for a Decarbonized Connected Energy Grid” - Sheraton Dubrovnik Riviera Hotel, Srebreno, Kroatien Dauer: 14 Okt. 2024 → 17 Okt. 2024 https://attend.ieee.org/isgt-2024/ |
Research Field
- Flexibility and Business Models