Predictive analytics for data driven decision support in health and care

Dieter Hayn, Sai Veeranki, Martin Kropf, Alphons Eggerth, Karl Kreiner, Diether Kramer, Günter Schreier

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Due to an ever-increasing amount of data generated in healthcare each day, healthcare professionals are more and more challenged with information. Predictive models based on machine learning algorithms can help to quickly identify patterns in clinical data. Requirements for data driven decision support systems for health and care (DS4H) are similar in many ways to applications in other domains. However, there are also various challenges which are specific to health and care settings. The present paper describes a) healthcare specific requirements for DS4H and b) how they were addressed in our Predictive Analytics Toolset for Health and care (PATH). PATH supports the following process: objective definition, data cleaning and pre-processing, feature engineering, evaluation, result visualization, interpretation and validation and deployment. The current state of the toolset already allows the user to switch between the various involved levels, i. e. raw data (ECG), pre-processed data (averaged heartbeat), extracted features (QT time), built models (to classify the ECG into a certain rhythm abnormality class) and outcome evaluation (e. g. a false positive case) and to assess the relevance of a given feature in the currently evaluated model as a whole and for the individual decision. This allows us to gain insights as a basis for improvements in the various steps from raw data to decisions.
OriginalspracheEnglisch
Seiten (von - bis)183-194
Seitenumfang12
Fachzeitschriftit - Information Technology (Verlag De Gruyter, Oldenburg)
Volume60
Issue4
DOIs
PublikationsstatusVeröffentlicht - 2018

Research Field

  • Exploration of Digital Health

Schlagwörter

  • Clinical decision support
  • Machine learning
  • Predictive modelling
  • Feature engineering

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive analytics for data driven decision support in health and care“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren