Proceedings of the 15th International Newborn Brain Conference: Other forms of brain monitoring, such as NIRS, fMRI, biochemical, etc. Machine learning predicts outcomes in preterm neonates with intraventricular hemorrhage using targeted proteomics

, Silvia Schöntaler, Christa Nöhammer, Monika Olischar, Angelika Berger, Gregor Kasprian, Georg Langs, Klemens Vierlinger, Nicholas Nicoletti, Rakesh Lavu, Wei Liu, Sreenivas Karnati, Subhash Puthuraya, Helen L Turner, James P Boardman, Nicola J Robertson, Ana Laguna Pradas, Bernhard Schwaberger, Gerhard Pichler, Mohamed El-DibSeth Goldstein, John Sunwoo, Sarah Schlatterer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Preterm neonates with intraventricular hemorrhage (IVH) are at risk for posthemorrhagic ventricular dilatation (PHVD). In recent years targeted proteomics has developed into a powerful protein quantifi cation tool in biomedical research, systems biology, and clinical applications. This study aims to inform therapeutic decision-making and parental counseling using proteomics in this high-risk group.
OriginalspracheEnglisch
Aufsatznummer1
Seiten (von - bis)S393-S394
Seitenumfang2
FachzeitschriftJournal of Neonatal-Perinatal Medicine
Issue17
DOIs
PublikationsstatusVeröffentlicht - 5 Aug. 2024

Research Field

  • Molecular Diagnostics

Schlagwörter

  • Machine learning
  • pediatrics
  • Biomarker discovery

Web of Science subject categories (JCR Impact Factors)

  • Medicine, Research & Experimental

Fingerprint

Untersuchen Sie die Forschungsthemen von „Proceedings of the 15th International Newborn Brain Conference: Other forms of brain monitoring, such as NIRS, fMRI, biochemical, etc. Machine learning predicts outcomes in preterm neonates with intraventricular hemorrhage using targeted proteomics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren