Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning

Liping Huang, Hongwei Sun, Liangbin Sun, Keqing Shi, Yuzhe Chen, Xueqian Ren, Yuancai Ge, Danfeng Jiang, Xiaohu Liu, Wolfgang Knoll, Qingwen Zhang, Yi Wang

    Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

    Abstract

    Biopsy is the recommended standard for pathological diagnosis of liver carcinoma. However, this method usually requires sectioning and staining, and well-trained pathologists to interpret tissue images. Here, we utilize Raman spectroscopy to study human hepatic tissue samples, developing and validating a workflow for in vitro and intraoperative pathological diagnosis of liver cancer. We distinguish carcinoma tissues from adjacent non-tumour tissues in a rapid, non-disruptive, and label-free manner by using Raman spectroscopy combined with deep learning, which is validated by tissue metabolomics. This technique allows for detailed pathological identification of the cancer tissues, including subtype, differentiation grade, and tumour stage. 2D/3D Raman images of unprocessed human tissue slices with submicrometric resolution are also acquired based on visualization of molecular composition, which could assist in tumour boundary recognition and clinicopathologic diagnosis. Lastly, the potential for a portable handheld Raman system is illustrated during surgery for real-time intraoperative human liver cancer diagnosis.
    OriginalspracheEnglisch
    Aufsatznummer48
    Seitenumfang14
    FachzeitschriftNature Communications
    Volume14
    DOIs
    PublikationsstatusVeröffentlicht - 4 Jan. 2023

    Research Field

    • Biosensor Technologies

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Diese Publikation zitieren