RGB-D structural classification of guardrails via learning from synthetic data

Kai Göbel, Csaba Beleznai (Vortragende:r), Alexander Sing, Jürgen Biber, Christian Stefan

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Vision-based environment perception is a key sensing and analysis modality for mobile robotic platforms. Modern learning concepts allow for interpreting a scene in terms of its objects and their spatial relations. This paper presents a specific analysis pipeline targeting the structural classification of guardrail structures within roadside environments from a mobile platform. Classification implies determining the type label of an observed structure, given a catalog of all possible types. To this end, the proposed concept employs semantic segmentation learned fully in the synthetic domain, and stereo depth data analysis for estimating the metric dimensions of key structural elements. The paper introduces a Blender-based procedural data generation pipeline, targeting to accomplish a narrow sim-to-real gap, allowing to use synthetic training image data to train models valid in the real-world domain. The paper evaluates two semantic segmentation schemes for the part segmentation task, and presents a temporal tracking and propagation concept to aggregate single-frame estimates. Results demonstrate that the proposed analysis framework is well applicable to real scenarios and it can be used as a tool for digitally mapping safety-critical roadside assets
OriginalspracheEnglisch
TitelProceedings of the 14th International Joint Conference on Computational Intelligence 2022
Seiten445-453
Seitenumfang9
DOIs
PublikationsstatusVeröffentlicht - 2022
VeranstaltungWorkshop on Robotics, Computer Vision and Intelligent Systems (ROBOVIS'22), Workshop of the 14th International Joint Conference on Computational Intelligence 2022 -
Dauer: 26 Okt. 202227 Okt. 2022

Konferenz

KonferenzWorkshop on Robotics, Computer Vision and Intelligent Systems (ROBOVIS'22), Workshop of the 14th International Joint Conference on Computational Intelligence 2022
Zeitraum26/10/2227/10/22

Research Field

  • Road Infrastructure Assessment, Modelling and Safety Evaluation
  • Assistive and Autonomous Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „RGB-D structural classification of guardrails via learning from synthetic data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren