Semi-supervised Configuration and Optimization of Anomaly Detection Algorithms on Log Data

Viktor Beck (Autor:in und Vortragende:r), Max Landauer, Markus Wurzenberger, Florian Skopik, Andreas Rauber

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Cyber threats are evolving rapidly, making anomaly detection (AD) in system log data increasingly important for detection of known and unknown attacks. The configuration of AD algorithms heavily depends on the data at hand. It often involves a complex feature selection process and the determination of parameters such as thresholds or window sizes. In many cases, configuration requires manual intervention by domain experts, which limits accessibility and effectiveness of AD algorithms. This work introduces a Configuration-Engine (CE), which employs a semi-supervised approach to automate the configuration process or optimize existing configurations. The CE utilizes statistical methods to identify log line properties to recognize meaningful tokens for AD methods to monitor. It categorizes variables by their characteristics and behavior over time, then specifies which log parts a detector should observe, and sets appropriate configuration parameters.The CE was evaluated using four different detectors. Evaluations on different Apache Access and audit datasets containing attack traces showed that the CE achieved an average precision of over 0.94 for Apache and over 0.79 for audit datasets, while maintaining high recall, competing with the performance of expert-crafted configurations. The optimization approach was able to strongly improve the precision of both the CE’s and the experts’ configurations for Apache data in 7 out of 16 cases. Furthermore, the CE’s configurations were significantly dissimilar to each other when generated on audit data, highlighting the importance of automated configuration.
OriginalspracheEnglisch
Titel2024 IEEE International Conference on Big Data (BigData)
Seiten2575 - 2585
ISBN (elektronisch)979-8-3503-6248-0
DOIs
PublikationsstatusVeröffentlicht - 15 Dez. 2024
Veranstaltung2024 IEEE International Conference on Big Data (BigData) - Washington, Washington, USA/Vereinigte Staaten
Dauer: 15 Dez. 202418 Dez. 2024

Konferenz

Konferenz2024 IEEE International Conference on Big Data (BigData)
Land/GebietUSA/Vereinigte Staaten
StadtWashington
Zeitraum15/12/2418/12/24

Research Field

  • Cyber Security

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semi-supervised Configuration and Optimization of Anomaly Detection Algorithms on Log Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren