Spatial correlation based artifact detection for automatic seizure detection in EEG

Ana M Skupch, Peter Dollfuß, Franz Fürbaß, Gerhard Gritsch, Manfred M Hartmann, Hannes Perko, Ekaterina Pataraia, Gerald Lindinger, Tilmann Kluge

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

Automatic EEG-processing systems such as seizure detection systems are more and more in use to cope with the large amount of data that arises from long-term EEG-monitorings. Since artifacts occur very often during the recordings and disturb the EEG-processing, it is crucial for these systems to have a good automatic artifact detection. We present a novel, computationally inexpensive automatic artifact detection system that uses the spatial distribution of the EEG-signal and the location of the electrodes to detect artifacts on electrodes. The algorithm was evaluated by including it into the automatic seizure detection system EpiScan and applying it to a very large amount of data including a large variety of EEGs and artifacts.

OriginalspracheEnglisch
TitelConference proceedings: 2013
Seiten1972-1975
Seitenumfang4
Band2013
DOIs
PublikationsstatusVeröffentlicht - Juli 2013
VeranstaltungEMBC 2013: 35th Annual International Conference of the IEEE Engineering in Medicine Biology Society -
Dauer: 3 Juli 20137 Juli 2013

Publikationsreihe

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.

Konferenz

KonferenzEMBC 2013: 35th Annual International Conference of the IEEE Engineering in Medicine Biology Society
Zeitraum3/07/137/07/13

Research Field

  • Exploration of Digital Health

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spatial correlation based artifact detection for automatic seizure detection in EEG“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren