Spatial Data Science Languages: commonalities and needs

Edzer Pebesma, Martin Fleischmann, Josiah Parry, Jakub Nowosad, Anita Graser, Dewey Dunnington, Maarten Pronk, Rafael Schouten, Robin Lovelace, Marius Appel, Lorena Abad

Publikation: Beitrag in FachzeitschriftArtikel

Abstract

Recent workshops brought together several developers, educators and users of software packages extending popular languages for spatial data handling, with a primary focus on R, Python and Julia. Common challenges discussed included handling of spatial or spatio-temporal support, geodetic coordinates, in-memory vector data formats, data cubes, inter-package dependencies, packaging upstream libraries, differences in habits or conventions between the GIS and physical modelling communities, and statistical models. The following set of insights have been formulated: (i) considering software problems across data science language silos helps to understand and standardise analysis approaches, also outside the domain of formal standardisation bodies; (ii) whether attribute variables have block or point support, and whether they are spatially intensive or extensive has consequences for permitted operations, and hence for software implementing those; (iii) handling geometries on the sphere rather than on the flat plane requires modifications to the logic of {\em simple features}, (iv) managing communities and fostering diversity is a necessary, on-going effort, and (v) tools for cross-language development need more attention and support.
OriginalspracheEnglisch
Seitenumfang31
FachzeitschriftarXiv
DOIs
PublikationsstatusVeröffentlicht - 20 März 2025

Research Field

  • Multimodal Analytics

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spatial Data Science Languages: commonalities and needs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren