Stochastic analysis of citation time series of emergent research topics

Maximilian Förster, Birgit Stelzer, Edgar Schiebel (Vortragende:r)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Detecting and forecasting emerging research topics has become more demanded by researchers and practitioners. Bibliometrics provide a promising way to detect emerging research topics at an early stage. However, reliably forecasting the emergence of a research topic still remains a challenge. Based on the number of cited references per year of a current research topic, we used the relative knowledge growth described as time series. The time series were analyzed stochastically. As they reveal a common pattern of memory, this memory can be used to shift the relative growth factor to the future using stochastic ARMA models. An approach to forecast the emergence of a research topic using ARMA models and thus detecting emergent research topics even earlier is proposed.
OriginalspracheEnglisch
TitelSTI 2018 Conference Proceedings
Seiten1279-1291
Seitenumfang13
PublikationsstatusVeröffentlicht - 2018
Veranstaltung23rd International Conference on Science and Technology Indicators -
Dauer: 12 Sept. 201814 Sept. 2018

Konferenz

Konferenz23rd International Conference on Science and Technology Indicators
Zeitraum12/09/1814/09/18

Research Field

  • Innovation Dynamics and Modelling

Schlagwörter

  • Bibliometrics
  • Emerging research topics
  • ARMA model

Fingerprint

Untersuchen Sie die Forschungsthemen von „Stochastic analysis of citation time series of emergent research topics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren