TY - JOUR
T1 - The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications
AU - Wagner, Wolfgang
AU - Hahn, Sebastian
AU - Kidd, R.
AU - Melzer, Thomas
AU - Bartalis, Zoltan
AU - Hasenauer, Stefan
AU - Figa-Saldana, Julia
AU - De Rosnay, Patricia
AU - Jann, Alexander
AU - Schneider, Stefan
AU - Komma, Jürgen
AU - Kubu, Gerhard
AU - Brugger, Katharina
AU - Aubrecht, Christoph
AU - Zueger, Johann
AU - Gangkofner, Ute
AU - Kienberger, Stefan
AU - Brocca, Luca
AU - Wang, Yong
AU - Blöschl, Günter
AU - Eitzinger, Josef
AU - Steinnocher, Klaus
AU - Zeil, Peter
AU - Rubel, Franz
PY - 2013
Y1 - 2013
N2 - Many physical, chemical and biological processes taking place at the land surface are strongly influenced by the amount of water stored within the upper soil layers. Therefore, many scientific disciplines require soil moisture observations for developing, evaluating and improving their models. One of these disciplines is meteorology where soil moisture is important due to its control on the exchange of heat and water between the soil and the lower atmosphere. Soil moisture observations may thus help to improve the forecasts of air temperature, air humidity and precipitation. However, until recently, soil moisture observations had only been available over a limited number of regional soil moisture networks. This has hampered scientific progress as regards the characterisation of land surface processes not just in meteorology but many other scientific isciplines as well. Fortunately, in recent years, satellite soil moisture data have increasingly become available. One of the freely
available global soil moisture data sets is derived from the backscatter measurements acquired by the Advanced Scatterometer (ASCAT) that is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series. ASCAT was designed to observe wind speed and direction over the oceans and was initially not foreseen for monitoring soil moisture over land. Yet, as argued in this review paper, the characteristics of the ASCAT instrument, most importantly its wavelength (5.7 cm), its high radiometric accuracy, and its multiple-viewing capabilities make it an attractive sensor for measuring soil
moisture. Moreover, given the operational status of ASCAT, and its promising long-term prospects, many geoscientific applications might benefit from using ASCAT soil moisture data. Nonetheless, the ASCAT soil moisture product is relatively complex, requiring a good understanding of its properties before it can be successfully used in applications. To provide a comprehensive overview of the major characteristics and caveats of the ASCATsoil moisture product, this paper describes the ASCATinstrument and the soil moisture processor
and near-real-time distribution service implemented by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).Areview of the most recent validation studies shows that the quality of ASCAT soil moisture product is - with the exception of arid environments -comparable to, and over some regions (e.g. Europe) even better than currently available soil moisture data derived from passive microwave sensors. Further, a review of applications studies shows that the use of the ASCAT soil moisture product is particularly advanced in the fields of numerical weather prediction and hydrologic modelling. But also in other application areas such as yield monitoring, epidemiologic modelling, or societal risks assessment some first progress can be noted. Considering the generally positive evaluation results, it is expected that the ASCAT soil moisture product will increasingly be used by a growing number of rather diverse land applications.
AB - Many physical, chemical and biological processes taking place at the land surface are strongly influenced by the amount of water stored within the upper soil layers. Therefore, many scientific disciplines require soil moisture observations for developing, evaluating and improving their models. One of these disciplines is meteorology where soil moisture is important due to its control on the exchange of heat and water between the soil and the lower atmosphere. Soil moisture observations may thus help to improve the forecasts of air temperature, air humidity and precipitation. However, until recently, soil moisture observations had only been available over a limited number of regional soil moisture networks. This has hampered scientific progress as regards the characterisation of land surface processes not just in meteorology but many other scientific isciplines as well. Fortunately, in recent years, satellite soil moisture data have increasingly become available. One of the freely
available global soil moisture data sets is derived from the backscatter measurements acquired by the Advanced Scatterometer (ASCAT) that is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series. ASCAT was designed to observe wind speed and direction over the oceans and was initially not foreseen for monitoring soil moisture over land. Yet, as argued in this review paper, the characteristics of the ASCAT instrument, most importantly its wavelength (5.7 cm), its high radiometric accuracy, and its multiple-viewing capabilities make it an attractive sensor for measuring soil
moisture. Moreover, given the operational status of ASCAT, and its promising long-term prospects, many geoscientific applications might benefit from using ASCAT soil moisture data. Nonetheless, the ASCAT soil moisture product is relatively complex, requiring a good understanding of its properties before it can be successfully used in applications. To provide a comprehensive overview of the major characteristics and caveats of the ASCATsoil moisture product, this paper describes the ASCATinstrument and the soil moisture processor
and near-real-time distribution service implemented by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).Areview of the most recent validation studies shows that the quality of ASCAT soil moisture product is - with the exception of arid environments -comparable to, and over some regions (e.g. Europe) even better than currently available soil moisture data derived from passive microwave sensors. Further, a review of applications studies shows that the use of the ASCAT soil moisture product is particularly advanced in the fields of numerical weather prediction and hydrologic modelling. But also in other application areas such as yield monitoring, epidemiologic modelling, or societal risks assessment some first progress can be noted. Considering the generally positive evaluation results, it is expected that the ASCAT soil moisture product will increasingly be used by a growing number of rather diverse land applications.
KW - Soil moisture
KW - earth observation
KW - scatterometer
KW - hydrometeorological applications
KW - Soil moisture
KW - earth observation
KW - scatterometer
KW - hydrometeorological applications
U2 - 10.1127/0941-2948/2013/0399
DO - 10.1127/0941-2948/2013/0399
M3 - Article
SN - 0941-2948
VL - 22
SP - 5
EP - 33
JO - Meteorologische Zeitschrift
JF - Meteorologische Zeitschrift
IS - 1
ER -