The DeMaDs Open Source Modeling Framework for Power System Malfunction Detection

David Fellner (Vortragende:r), Thomas Strasser, Wolfgang Kastner

    Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

    Abstract

    Modeling and simulation of electrical power systems are becoming increasingly important approaches for the development and operation of novel smart grid functionalities - especially with regard to data-driven applications as data of certain operational states or misconfigurations can be next to impossible to obtain. The DeMaDs framework allows for the simulation and modeling of electric power grids and malfunctions therein. Furthermore, it serves as a testbed to assess the applicability of various data -driven malfunction detection methods. These include data mining techniques, traditional machine learning approaches as well as deep learning methods. The framework's capabilities and functionality are laid out here, as well as explained by the means of an illustrative example.
    OriginalspracheEnglisch
    TitelProceedings
    ErscheinungsortAachen, Germany
    Seitenumfang6
    ISBN (elektronisch)979-8-3503-1122-8
    DOIs
    PublikationsstatusVeröffentlicht - 5 Apr. 2023
    Veranstaltung2023 Open Source Modelling and Simulation of Energy Systems (OSMSES) - RWTH Aachen, Aachen, Deutschland
    Dauer: 27 März 202329 März 2023
    https://go.fzj.de/osmses2023

    Konferenz

    Konferenz2023 Open Source Modelling and Simulation of Energy Systems (OSMSES)
    KurztitelOSMSES
    Land/GebietDeutschland
    StadtAachen
    Zeitraum27/03/2329/03/23
    Internetadresse

    Research Field

    • Power System Digitalisation

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „The DeMaDs Open Source Modeling Framework for Power System Malfunction Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Diese Publikation zitieren