Thinking Geographically about AI Sustainability

Meilin Shi (Vortragende:r), Kitty Currier, Zilong Liu, Krzysztof Janowicz, Nina Wiedemann, Judith Verstegen, Grant McKenzie, Anita Graser, Rui Zhu, Gengchen Mai

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Driven by foundation models, recent progress in AI and machine learning has reached unprecedented complexity. For instance, the GPT-3 language model consists of 175 billion parameters and a training-data size of 570 GB. While it has achieved remarkable performance in generating text that is difficult to distinguish from human-authored content, a single training of the model is estimated to produce over 550 metric tons of CO2 emissions. Likewise, we see advances in GeoAI research improving large-scale prediction tasks like satellite image classification and global climate modeling, to name but a couple. While these models have not yet reached comparable complexity and emissions levels, spatio-temporal models differ from language and image-generation models in several ways that make it necessary to (re)train them more often, with potentially large implications for sustainability. While recent work in the machine learning community has started calling for greener and more energy-efficient AI alongside improvements in model accuracy, this trend has not yet reached the GeoAI community at large. In this work, we bring this issue to not only the attention of the GeoAI community but also present ethical considerations from a geographic perspective that are missing from the broader, ongoing AI-sustainability discussion. To start this discussion, we propose a framework to evaluate models from several sustainability-related angles, including energy efficiency, carbon intensity, transparency, and social implications. We encourage future AI/GeoAI work to acknowledge its environmental impact as a step towards a more resource-conscious society. Similar to the current push for reproducibility, future publications should also report the energy/carbon costs of improvements over prior work.
OriginalspracheEnglisch
TitelAGILE GIScience Series
UntertitelProceedings of the 26th AGILE Conference on Geographic Information Science
Redakteure/-innenP. van Oosterom, H. Ploeger, A. Mansourian, S. Scheider, R. Lemmens, B. van Loenen
Herausgeber (Verlag)Copernicus Publications
Seiten1-7
Seitenumfang7
Band4
Auflage42
DOIs
PublikationsstatusVeröffentlicht - 6 Juni 2023
VeranstaltungAGILE 2023 - Delft, Niederlande
Dauer: 13 Juni 202316 Juni 2023
https://agile-online.org/conference-2023

Publikationsreihe

NameAGILE: GIScience Series

Konferenz

KonferenzAGILE 2023
Land/GebietNiederlande
StadtDelft
Zeitraum13/06/2316/06/23
Internetadresse

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Thinking Geographically about AI Sustainability“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren