Top In The Lab, Flop In The Field? Evaluation Of A Sensor-based Travel Activity Classifier With The SHL Dataset

Peter Widhalm (Vortragende:r), Maximilian Leodolter, Norbert Brändle

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

We present a solution to the Sussex-Huawei Locomotion- Transportation (SHL) recognition challenge (team "S304"). Our experiments reveal two potential pitfalls in the evalu- ation of activity recognition algorithms: 1) unnoticed over- fitting due to autocorrelation (i.e. dependencies between temporally close samples), and 2) the accuracy/generality trade-off due to idealized conditions and lack of variation in the data. We show that evaluation with a random train- ing/test split suggests highly accurate recognition of eight different travel activities with an average F1 score of 96% for single-participant/fixed-position data, whereas with proper backtesting the F1 score drops to 84%, for data of different participants in the SHL Dataset to 61%, and for different carrying positions to 54%. Our experiments demonstrate that results achieved `in-the-lab´ can easily become sub- ject to an upward bias and cannot always serve as reliable indicators for the future performance `in-the-field´, where generality and robustness are essential.
OriginalspracheEnglisch
TitelProceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp '18)
PublikationsstatusVeröffentlicht - 2018
Veranstaltung2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp '18) -
Dauer: 8 Okt. 201812 Okt. 2018

Konferenz

Konferenz2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp '18)
Zeitraum8/10/1812/10/18

Research Field

  • Ehemaliges Research Field - Mobility Systems

Schlagwörter

  • Activity recognition; Transport mode detection; Signal processing.

Fingerprint

Untersuchen Sie die Forschungsthemen von „Top In The Lab, Flop In The Field? Evaluation Of A Sensor-based Travel Activity Classifier With The SHL Dataset“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren