xHits: An Automatic Team Performance Metric for VR Police Training

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

VR training offers scenario-based sessions with analyzable replays, but performance assessment often relies on trainers’ subjective judgment. To increase objectivity, we identified key performance indicators (KPIs) through trainer interviews for VR police training and examined their feasibility for automatic VR tracking during a user study. The amount of rooms cleared before the first shot, the teams movement and the stress reaction after the first shot significantly predicted the teams success, operationalized as the number of team members shot in the scenario, which resulted in the "xHits" team performance metric. This paper details the methodology of creating such indicators, the xHits model, and its evaluation, demonstrating the potential of metrology for objective team performance measurements.
OriginalspracheEnglisch
Titel2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering. Proceedings
UntertitelIEEE MetroXRAINE Milano 2023
Seiten178-183
ISBN (elektronisch)979-8-3503-0080-2
DOIs
PublikationsstatusVeröffentlicht - Okt. 2023
Veranstaltung2023 IEEE MetroXRAINE - International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering - Milano, Italien
Dauer: 25 Okt. 202327 Okt. 2023
https://metroxraine.org/

Konferenz

Konferenz2023 IEEE MetroXRAINE - International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering
KurztitelIEEE MetroXRAINE
Land/GebietItalien
StadtMilano
Zeitraum25/10/2327/10/23
Internetadresse

Research Field

  • Experience Business Transformation

Fingerprint

Untersuchen Sie die Forschungsthemen von „xHits: An Automatic Team Performance Metric for VR Police Training“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren