AI Urban Voids: A Data-Driven Approach to Urban Activation

Amal Algamdey, Aleksander Mastalski, Angelos Chronis, Amar Gurung, Felipe Romero Vargas, German Bodenbender, Lea Khairallah

Research output: Chapter in Book or Conference ProceedingsBook chapterpeer-review

Abstract

With the development of digital technologies, big urban data is now readily available online. This opens the opportunity to utilize new data and create new relationships within multiple urban features for cities. Moreover, new computational design techniques open a new portal for architects and designers to reinterpret this urban data and provide much better-informed design decisions. The “AI Urban Voids'' project is defined as a data-driven approach to analyze and predict the strategic location for urban uses in the addition of amenities within the city. The location of these urban amenities is evaluated based on predictions and scores followed by a series of urban analyses and simulations using K-Means clustering. Furthermore, these results are then visualized in a web-based platform; likewise, the aim is to create a tool that will work on a feedback loop system that constantly updates the information. This paper explains the use of different datasets from Five cities including Melbourne, Sydney, Berlin, Warsaw, and Sao Paulo. Python, Osmx libraries and K-means clustering open the way to manipulate large data sets by introducing a collection of computational processes that can override traditional urban analysis.
Original languageEnglish
Title of host publicationThe International Conference on Computational Design and Robotic Fabrication
Pages293-303
Number of pages11
DOIs
Publication statusPublished - 2023

Publication series

NameComputational Design and Robotic Fabrication
VolumePart F1309

Research Field

  • Former Research Field - Integrated Digital Urban Planning

Keywords

  • Artificial intelligence
  • Computational urban design
  • Data visualization
  • Machine learning
  • Urban data

Fingerprint

Dive into the research topics of 'AI Urban Voids: A Data-Driven Approach to Urban Activation'. Together they form a unique fingerprint.

Cite this