TY - JOUR
T1 - An ASIC-Based Artificial Neural Network Applied Real-time Speech Recognition SOPC
AU - D. Pham, Lam
AU - M. Nguyen, Hieu
AU - T. Nguyen, Du N. N.
AU - Hoang, Trang
PY - 2016
Y1 - 2016
N2 - Artificial Neural Network (ANN) is promoted to one of major schemes applied in pattern recognition area. Indeed, many approaches to software-based platforms have proven great performance of ANN. However, developing pattern recognition systems integrating ANN hardware-based architecture has been limited not only by the silicon requirements such as frequency, area, power, or resource but also by high accuracy and real-time applications strictly. Although a considerable number of ANN hardware-based architectures have been proposed currently, they have experienced a deprivation of functions due to both small configurations and ability of reconfiguration. Consequently, achieving an effective ANN hardware-based architecture so as to adapt to not only strict accuracy, enormous configures, or silicon area but also real-time criterion in pattern recognition systems has been really challenged. To tackle these issues, this work has proposed a dynamic structure of three-layer ANN architecture being able to reconfigure for adapting to various real-time applications. What is more, a complete SOPC system integrating proposed ANN hardware has also implemented to apply Vietnamese speech recognition automatically to confirm high recognition probability around 95.2 % towards 20 Vietnamese discrete words. Moreover, experiment results on such ASIC-based architecture have witnessed maximum frequency at 250 MHz on 130nm technology as well as great ability of reconfiguration.
AB - Artificial Neural Network (ANN) is promoted to one of major schemes applied in pattern recognition area. Indeed, many approaches to software-based platforms have proven great performance of ANN. However, developing pattern recognition systems integrating ANN hardware-based architecture has been limited not only by the silicon requirements such as frequency, area, power, or resource but also by high accuracy and real-time applications strictly. Although a considerable number of ANN hardware-based architectures have been proposed currently, they have experienced a deprivation of functions due to both small configurations and ability of reconfiguration. Consequently, achieving an effective ANN hardware-based architecture so as to adapt to not only strict accuracy, enormous configures, or silicon area but also real-time criterion in pattern recognition systems has been really challenged. To tackle these issues, this work has proposed a dynamic structure of three-layer ANN architecture being able to reconfigure for adapting to various real-time applications. What is more, a complete SOPC system integrating proposed ANN hardware has also implemented to apply Vietnamese speech recognition automatically to confirm high recognition probability around 95.2 % towards 20 Vietnamese discrete words. Moreover, experiment results on such ASIC-based architecture have witnessed maximum frequency at 250 MHz on 130nm technology as well as great ability of reconfiguration.
UR - https://www.mendeley.com/catalogue/25e2a99f-26f2-346e-b465-ff18067b9afb/
U2 - 10.31130/jst.2016.22
DO - 10.31130/jst.2016.22
M3 - Article
VL - 2
SP - 38
JO - Journal of Science and Technology: Issue on Information and Communications Technology
JF - Journal of Science and Technology: Issue on Information and Communications Technology
IS - 1
ER -