TY - JOUR
T1 - Device-guided slow breathing with direct biofeedback of pulse wave velocity - acute effects on pulse arrival time and self-measured blood pressure
AU - Mengden, Thomas
AU - Bachler, Martin
AU - Sehnert, Walter
AU - Marschall, Philip
AU - Wassertheurer, Siegfried
N1 - Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - BACKGROUND: There isevidence that device-guided slow breathing using biofeedback acutely reduces blood pressure (BP) and pulse wave velocity [i.e. increased pulse arrival time (PAT)].OBJECTIVES: The objectives of the study presented here were to test whether the results of changes observed in PAT in earlier studies are reproducible over 1 week and how changes in pulse wave velocity/PAT translate into absolute self-measured BP changes.METHODS: Patients with a systolic BP 130-160 mmHg or treated essential hypertension (21 females/23 males) were trained to perform unattended device-guided slow breathing exercises for 10 min daily over 5 days. Furthermore, they were skilled to perform self-measurement of BP before and after the breathing exercise using a validated upper-arm device.RESULTS: Office BP at screening [median (1, 3. Q)] was 137 (132, 142)/83 (79, 87) mmHg. We observed a significant ( P < 0.05) increase in PAT of 5 ms (SD 12.5 ms) on average after 10 min of guided breathing and an additional 1 ms ( P < 0.05, SD 8 ms) during the following 5 min of spontaneous breathing compared to baseline. PAT before the exercise remained constant over 5 days paralleled by constant self-measured BP before the exercise. Device-guided breathing was associated with a significant reduction of self-measured SBP of 5 mmHg ( P < 0.01, SD 8 mmHg). Data furthermore demonstrated that these changes were highly reproducible over 1 week.CONCLUSIONS: Device-guided slow breathing and biofeedback lead to reproducible and favorable changes (increase) in PAT and SBP (decrease).
AB - BACKGROUND: There isevidence that device-guided slow breathing using biofeedback acutely reduces blood pressure (BP) and pulse wave velocity [i.e. increased pulse arrival time (PAT)].OBJECTIVES: The objectives of the study presented here were to test whether the results of changes observed in PAT in earlier studies are reproducible over 1 week and how changes in pulse wave velocity/PAT translate into absolute self-measured BP changes.METHODS: Patients with a systolic BP 130-160 mmHg or treated essential hypertension (21 females/23 males) were trained to perform unattended device-guided slow breathing exercises for 10 min daily over 5 days. Furthermore, they were skilled to perform self-measurement of BP before and after the breathing exercise using a validated upper-arm device.RESULTS: Office BP at screening [median (1, 3. Q)] was 137 (132, 142)/83 (79, 87) mmHg. We observed a significant ( P < 0.05) increase in PAT of 5 ms (SD 12.5 ms) on average after 10 min of guided breathing and an additional 1 ms ( P < 0.05, SD 8 ms) during the following 5 min of spontaneous breathing compared to baseline. PAT before the exercise remained constant over 5 days paralleled by constant self-measured BP before the exercise. Device-guided breathing was associated with a significant reduction of self-measured SBP of 5 mmHg ( P < 0.01, SD 8 mmHg). Data furthermore demonstrated that these changes were highly reproducible over 1 week.CONCLUSIONS: Device-guided slow breathing and biofeedback lead to reproducible and favorable changes (increase) in PAT and SBP (decrease).
KW - Male
KW - Female
KW - Humans
KW - Blood Pressure/physiology
KW - Hypertension
KW - Pulse Wave Analysis
KW - Blood Pressure Determination/methods
KW - Heart Rate/physiology
KW - Biofeedback, Psychology
UR - https://www.mendeley.com/catalogue/54cc77b7-8c55-3d59-baaa-c43ce0523f0e/
U2 - 10.1097/MBP.0000000000000628
DO - 10.1097/MBP.0000000000000628
M3 - Article
C2 - 36606480
SN - 1359-5237
VL - 28
SP - 52
EP - 58
JO - Blood Pressure Monitoring
JF - Blood Pressure Monitoring
IS - 1
ER -