ECG classification combining conventional signal analysis, random forests and neural networks - a stacked learning scheme

Martin Kropf, Martin Baumgartner (Speaker), Sai Veeranki, Lukas Haider, Dieter Hayn, Günter Schreier

Research output: Chapter in Book or Conference ProceedingsConference Proceedings with Poster Presentationpeer-review

Abstract

Introduction This year´s Physionet Challenge focused on the question how many leads are required to develop a high-quality ECG classification algorithm. Methods We (team name: easyG) propose a stacked learning scheme combining conventional signal analysis, random forests and neural networks. Highly specialized regression random forest models were trained with classical ECG processing where features were derived for each channel of each signal. The outputs were then used in a neural network to achieve a 1D regression vector, which was used to optimize classification thresholds. Results We present offline validation results for each lead set and class-specific classification scores to allow for insights into the question how many leads are sufficient. Discussion We have found that lead reduction leads to a minor loss in overall performance. However, variation in class-specific performance with lead reduction exists. Some classes were recognized better with more leads, but in rare cases, the opposite was true. The results suggest that the optimal number of used channels is depending on the setting and goals of the classification.
Original languageEnglish
Title of host publicationAbstracts of the Computing in Cardiology 2021
Number of pages4
Publication statusPublished - 2021
EventComputing in Cardiology 2021 (48th Computing in Cardiology Conference) -
Duration: 12 Sept 202115 Sept 2021

Conference

ConferenceComputing in Cardiology 2021 (48th Computing in Cardiology Conference)
Period12/09/2115/09/21

Research Field

  • Exploration of Digital Health

Fingerprint

Dive into the research topics of 'ECG classification combining conventional signal analysis, random forests and neural networks - a stacked learning scheme'. Together they form a unique fingerprint.

Cite this