Fake it till you Detect it: Continual Anomaly Detection in Multivariate Time-Series using Generative AI

Gastón García González (Author and Speaker), Pedro Casas-Hernandez, Alicia Fernández

Research output: Chapter in Book or Conference ProceedingsConference Proceedings with Oral Presentationpeer-review

Abstract

Anomaly detection in Multivariate Time-Series (MTS) data plays an important role in multiple domains, especially in cybersecurity, for the detection of unknown attacks. DC-VAE is a recent approach we have proposed for anomaly detection in network measurement multivariate data, which uses Variational Auto Encoders (VAEs) and Dilated Convolutional Neural Networks (DCNNs) to model complex and high-dimensional MTS data. However, detecting anomalies using VAEs can result in performance degradation and even catastrophic forgetting when trained on dynamic and evolving network measurements, particularly in the event of concept drifts. We extend DC-VAE to a continual learning setup, leveraging the generative AI properties of the underlying models to deal with continually evolving data. We introduce GenDeX, an approach to Generative AI-based anomaly detection which compresses the patterns extracted from past measurements into a generative model that can synthesize MTS data out of input Gaussian noise, mimicking the characteristics of the MTS data used for training. GenDeX relies on a Deep Generative Replay paradigm to realize continual learning, combining synthesized past MTS measurements with new observations to update the detection model. Using a large-scale, multi-dimensional network monitoring dataset collected from an operational mobile Internet Service Provider (ISP), we showcase the functionality of DC-VAE in the event of concept drifts, and study in-depth its generative characteristics, assessing GenDeX synthetically generated MTS examples. GenDeX enables DC-VAE adapting to continually evolving data, overcoming the limitations of catastrophic forgetting.
Original languageEnglish
Title of host publication2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)
PublisherIEEE Computer Society
Pages558-566
ISBN (Electronic)979-8-3503-2720-5
ISBN (Print)979-8-3503-2721-2
DOIs
Publication statusPublished - 1 Sept 2023
Event2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) - Delft, Delft, Netherlands
Duration: 3 Jul 20237 Jul 2023

Workshop

Workshop2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)
Country/TerritoryNetherlands
CityDelft
Period3/07/237/07/23

Research Field

  • Former Research Field - Data Science

Keywords

  • Anomaly detection
  • Generative AI
  • VAE
  • Multivariate Time-Series
  • GenDeX

Fingerprint

Dive into the research topics of 'Fake it till you Detect it: Continual Anomaly Detection in Multivariate Time-Series using Generative AI'. Together they form a unique fingerprint.

Cite this