Insights into structural features determining odorant affinities to honey bee odorant binding protein 14

Andreas Schwaighofer, Maria Pechlaner, Chris Oostenbrink, Carolina Kotlowski, Can Araman, Rosa Mastrogiacomo, Paolo Pelosi, Wolfgang Knoll, Christoph Nowak, Melanie Larisika

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.
    Original languageEnglish
    Pages (from-to)1042-1046
    Number of pages5
    JournalBiochemical and Biophysical Research Communications
    Volume446
    Issue number4
    DOIs
    Publication statusPublished - 2014

    Research Field

    • Biosensor Technologies

    Keywords

    • Odorant binding protein; Circular dichroism; Thermal stability; Ligand binding; Molecular dynamics

    Fingerprint

    Dive into the research topics of 'Insights into structural features determining odorant affinities to honey bee odorant binding protein 14'. Together they form a unique fingerprint.

    Cite this