The Cellular Network as a Sensor: From Mobile Phone Data to Real-Time Road Traffic Monitoring

Andreas Janecek, Danilo Valerio, Karin Hummel, Fabio Ricciato, Helmut Hlavacs

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Mobile cellular networks can serve as ubiquitous sensors for physical mobility.We propose a method to infer vehicle travel times on highways and to detect road congestion in realtime, based solely on anonymized signaling data collected from a mobile cellular network. Most previous studies have considered data generated from mobile devices active in calls, namely Call Detail Records (CDR), an approach that limits the number of observable devices to a small fraction of the whole population. Our approach overcomes this drawback by exploiting the whole set of signaling events generated by both idle and active devices. While idle devices contribute with a large volume of spatially coarse-grained mobility data, active devices provide finer-grained spatial accuracy for a limited subset of devices. The combined use of data from idle and active devices improves congestion detection performance in terms of coverage, accuracy, and timeliness. We apply our method to real mobile signaling data obtained from an operational network during a one-month period on a sample highway segment in the proximity of a European city, and present an extensive validation study based on ground-truth obtained from a rich set of reference datasources-road sensor data, toll data, taxi floating car data, and radio broadcast Messages.
    Original languageEnglish
    Pages (from-to)2551-2572
    Number of pages22
    JournalIEEE Transactions on Intelligent Transportation Systems
    Volume16
    Issue number5
    DOIs
    Publication statusPublished - 2015

    Research Field

    • Former Research Field - Mobility Systems

    Fingerprint

    Dive into the research topics of 'The Cellular Network as a Sensor: From Mobile Phone Data to Real-Time Road Traffic Monitoring'. Together they form a unique fingerprint.

    Cite this