Abstract
The aqueous processing of cathode materials for lithium-ion batteries (LIBs) has both environmental and cost benefits. However, high-loading, water-based electrodes from the layered oxides (e.g., NMC) typically exhibit worse electrochemical performance than NMP-based electrodes. In this work, primary, binary, and ternary binder mixtures of aqueous binders such as CMC, PAA, PEO, SBR, and Na alginate, in combination with bare and C-coated Al current collectors, were explored, aiming to improve the rate capability performance of NMC811 electrodes with high areal capacity (>= 4 mAh cm-2) and low binder content (3 wt.%). Electrodes with a ternary binder composition (CMC:PAA:SBR) have the best performance with bare Al current collectors, attaining a specific capacity of 150 mAh g-1 at 1C. Using carbon-coated Al current collectors results in improved performance for both water- and NMP-based electrodes. This is further accentuated for Na-Alg and CMC:PAA binder compositions. These electrodes show specific capacities of 170 and 80 mAh g-1 at 1C and 2C, respectively. Although the specific capacities at 1C are comparable to those for NMP-PVDF electrodes, they are approximately 50% higher at the 2C rate. This study aims to contribute to the development of sustainably processed NMC electrodes for high energy density LIBs using water as solvent.
Original language | English |
---|---|
Number of pages | 12 |
Journal | Batteries |
Volume | 10 |
Issue number | 3 |
DOIs | |
Publication status | Published - 13 Mar 2024 |
Research Field
- Battery Materials Development and Characterisation
Keywords
- NMC811
- aqueous processing
- high-loading electrodes
- water-based electrodes
- aqueous binders
- carbon-coated aluminum current collector
- rate capability